On the Relative Impact of Intraluminal Thrombus Heterogeneity on Abdominal Aortic Aneurysm Mechanics

Author:

Leach Joseph R.1,Kao Evan2,Zhu Chengcheng2,Saloner David2,Hope Michael D.2

Affiliation:

1. Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Avenue Suite S-261, Box 0628, San Francisco, CA 94143 e-mail:

2. Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143 e-mail:

Abstract

Intraluminal thrombus (ILT) is present in the majority of abdominal aortic aneurysms (AAA) of a size warranting consideration for surgical or endovascular intervention. The rupture risk of AAAs is thought to be related to the balance of vessel wall strength and the mechanical stress caused by systemic blood pressure. Previous finite element analyses of AAAs have shown that ILT can reduce and homogenize aneurysm wall stress. These works have largely considered ILT to be homogeneous in mechanical character or have idealized a stiffness distribution through the thrombus thickness. In this work, we use magnetic resonance imaging (MRI) to delineate the heterogeneous composition of ILT in 7 AAAs and perform patient–specific finite element analysis under multiple conditions of ILT layer stiffness disparity. We find that explicit incorporation of ILT heterogeneity in the finite element analysis is unlikely to substantially alter major stress analysis predictions regarding aneurysm rupture risk in comparison to models assuming a homogenous thrombus, provided that the maximal ILT stiffness is the same between models. Our results also show that under a homogeneous ILT assumption, the choice of ILT stiffness from values common in the literature can result in significantly larger variations in stress predictions compared to the effects of thrombus heterogeneity.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3