Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach

Author:

Mejía Juan M.1,Chejne Farid1,Molina Alejandro1,Sadiki Amsini2

Affiliation:

1. Departamento de Procesos y Energía, Universidad Nacional de Colombia, Cr. 80 No. 65-223, Medellín 050034, Colombia e-mail:

2. Institute of Energy and Power Plant Technology, Technischen Universität Darmstadt, Jovanka-Bontschits-Str. 2, Darmstadt D-64287, Germany e-mail:

Abstract

Mixing of a passive scalar in a high-Schmidt turbulent round jet was studied using large-eddy simulation (LES) coupled to filtered density function (FDF). This coupled approach enabled the solution of the continuity, momentum, and scalar (concentration) transport equations when studying mixing in a confined turbulent liquid jet discharging a conserved scalar (rhodamine B) into a low-velocity water stream. The Monte Carlo method was used for solving the FDF transport equation and controlling the number of particles per cell (NPC) using a clustering and splitting algorithm. A sensibility analysis of the number of stochastic particles per cell as well as the influence of the subgrid-scale (SGS) mixing time constant were evaluated. The comparison of simulation results with experiments showed that LES/FDF satisfactorily reproduced the behavior observed in this flow configuration. At high radial distances, the developed superviscous layer generates an intermittency phenomenon leading to a complex, anisotropic behavior of the scalar field, which is difficult to simulate with the conventional and advanced SGS models required by LES. This work showed a close agreement with reported experimental data at this superviscous layer following the FDF approach.

Publisher

ASME International

Subject

Mechanical Engineering

Reference41 articles.

1. Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet;ASME J. Fluid Eng.,2015

2. Numerical Simulation the Turbulent Rayleigh–Bénard Problem Using Subgrid Modeling;J. Fluid Mech.,1985

3. A Dynamic Subgrid-Scale Eddy Viscosity Model;Phys. Fluids A,1991

4. A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport;Phys. Fluids A,1991

5. Huai, Y., 2005, “Large Eddy Simulation in the Scalar Field,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3