Affiliation:
1. Design Automation Laboratory, Arizona State University, Tempe, AZ 85287
Abstract
A process plan is an instruction set for the manufacture of parts generated from detailed design drawings or computer-aided design (CAD) models. While these plans are highly detailed about machines, tools, fixtures, and operation parameters, tolerances typically show up in less formal manner, if at all. It is not uncommon to see only dimensional plus/minus values on rough sketches accompanying the instructions. On the other hand, design drawings use standard geometrical and dimensional tolerances (GD&T) symbols with datums and datum reference frames (DRFs) clearly specified. This is not to say that process planners do not consider tolerances; they are implied by way of choices of fixtures, tools, machines, and operations. Process planners do tolerance charting in converting design tolerances to the manufacturing datum flow based on operation sequence, but the resulting plans cannot be audited for conformance to design specification. In this paper, we present a framework for explicating the GD&T schema implied by machining process plans. The first step is to derive DRFs from the fixturing method in each setup. Then, basic dimensions for features machined in the setup are determined with respect to the extracted DRF. Using shop data for the machines and operations involved, the range of possible geometric variations are estimated for each type (form, size, orientation, and position). The sequence of operations determines the datum flow chain. Once we have a formal manufacturing GD&T schema, we can analyze and compare it to design specification using the T-map math model.
Subject
Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software
Reference17 articles.
1. Navigating the Tolerance Analysis Maze;Comput.-Aided Des. Appl.,2007
2. A Comparative Study of Tolerance Analysis Methods;ASME J. Comput. Inf. Sci. Eng.,2005
3. CATC—A Computer Aided Tolerance Control System;J. Manuf. Syst.,1986
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献