Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems

Author:

Zou Jing1,Arinez Jorge2,Chang Qing3,Lei Yong4

Affiliation:

1. Department of Mechanical Engineering, Stony Brook University, 156A Light Engineering, Stony Brook, NY 11794 e-mail:

2. Manufacturing Systems Research Lab, General Motors Research and Development Center, 30500 Mound Road, Warren, MI 48090 e-mail:

3. Department of Mechanical Engineering, Stony Brook University, 163 Light Engineering, Stony Brook, NY 11794 e-mail:

4. State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanical Engineering, Zhejiang University, Hangzhou 310013, China e-mail:

Abstract

Energy efficiency improvement and timely preventive maintenance (PM) are critical in manufacturing industry due to the rising energy cost, environmental concerns, and increasing requirements on system reliability. By strategically turning appropriate machines in down state, the corresponding energy consumption can be reduced, and at the meantime, the necessary PM works can be carried out to increase PM completion rate and reduce potential extra expense on PM during nonproduction shifts. However, there is usually a tradeoff between time dedicated to production and time available for energy saving and PM. In this paper, a systematic method is developed to identify opportunity windows (OWs) during which certain machines can be shut down to save energy and PM tasks can be performed while maintaining a desired production throughput. The method is based on stochastic serial production lines and real-time production data. A profit function is formulated to illustrate the tradeoff between energy cost savings and potential throughput loss. The profit function is used to justify the cost savings by utilizing the proposed OWs during production operation.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3