The Effect of Pressure Relief Valve Blowdown and Fire Conditions on the Thermo-Hydraulics Within a Pressure Vessel

Author:

Birk A. M.1,VanderSteen J. D. J.1

Affiliation:

1. Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract

In the summers of 2000 and 2001, a series of controlled fire tests were conducted on horizontal 1890liter (500 US gallon) propane pressure vessels. The test vessels were instrumented with pressure transducers, liquid space, vapor space, and wall thermocouples, and an instrumented flow nozzle in place of a pressure relief valve (PRV). A computer controlled PRV was used to control pressure. The vessels were heated using high momentum, liquid propane utility torches. Open pool fires were not used for the testing because they are strongly affected by wind. These wind effects make it almost impossible to have repeatable test conditions. The fire conditions used were calibrated to give heat inputs similar to a luminous hydrocarbon pool fire with an effective blackbody temperature in the range of 850°C±50°C. PRV blowdown (i.e., blowdown=poppressure−reclosepressure) and fire conditions were varied in this test series while all other input parameters were held constant. The fire conditions were varied by changing the number of burners applied to the vessel wall areas wetted by liquid and vapor. It was found that the vessel content’s response and energy storage varied according to the fire conditions and the PRV operation. The location and quantity of the burners affected the thermal stratification within the liquid, and the liquid swelling (due to vapor generation in the liquid) at the liquid∕vapor interface. The blowdown of the PRV affected the average vessel pressure, average liquid temperature, and time to temperature destratification in the liquid. Large blowdown also delayed thermal rupture.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference13 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal effects of a sonic jet fire impingement on a pipe;Journal of Loss Prevention in the Process Industries;2021-07

2. References;Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE, and Flash Fire Hazards;2010-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3