Distribution of Flow in an Arteriovenous Fistula Using Reduced-Order Models

Author:

Ventre Jeanne1,Abou Taam Salam2,Fullana José Maria1,Lagrée Pierre-Yves1

Affiliation:

1. Department of Mechanical Engineering, Institut Jean Le Rond d'Alembert, UMR 7190, Sorbonne Université, CNRS, Paris 75005, France

2. Department of Thoracic and Vascular Surgery, Hopital Privé Claude Galien, Quincy-sous-Sénart 91480, France

Abstract

Abstract The creation of a communication between an artery and a vein (arteriovenous fistula or AVF), to speed up the blood purification during hemodialysis of patients with renal insufficiency, induces significant rheological and mechanical modifications of the vascular network. In this study, we investigated the impact of the creation of an AVF with a zero-dimensional network model of the vascular system of an upper limb and a one-dimensional model around the anastomosis. We compared the simulated distribution of flow rate in this vascular system with Doppler ultrasound measurements. We studied three configurations: before the creation of the AVF, after the creation of the AVF, and after a focal reduction due to a hyper flow rate. The zero-dimensional model predicted the bounds of the diameter of the superficial vein that respects the flow constraints, assuming a high capillary resistance. We indeed highlighted the importance of knowing the capillary resistance as it is a decisive parameter in the models. We also found that the model reproduced the Doppler measurements of flow rate in every configuration and predicted the distribution of flow in cases where the Doppler was not available. The one-dimensional model allowed studying the impact of a venous constriction on the flow distribution, and the capillary resistance was still a crucial parameter.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3