Large Eddy Simulation of Flow and Heat Transfer in the 180‐Deg Bend Region of a Stationary Gas Turbine Blade Ribbed Internal Cooling Duct

Author:

Sewall Evan A.1,Tafti Danesh K.1

Affiliation:

1. Mechanical Engineering Department, Virginia Tech, Blacksburg, VA 24061

Abstract

Large eddy simulation of the 180 deg bend in a stationary ribbed duct is presented. The domain studied includes three ribs upstream of the bend region and three ribs downstream of the bend with an outflow extension added to the end, using a total of 8.4 million cells. Two cases are compared to each other: one includes a rib in the bend and the other does not. The friction factor, mean flow, turbulence, and heat transfer are compared in the two cases to help explain the benefits and disadvantages of the wide number of flow effects seen in the bend, including flow separation at the tip of the dividing wall, counter-rotating Dean vortices, high heat transfer at areas of flow impingement, and flow separation at the upstream and downstream corners of the bend. Mean flow results show a region of separated flow at the tip of the dividing region in the case with no rib in the bend, but no separation region is observed in the case with a rib. A pair of counter-rotating Dean vortices in the middle of the bend is observed in both cases. Turbulent kinetic energy profiles show a 30% increase in the midplane of the bend when the rib is added. High gradients of heat transfer augmentation are observed on the back wall and downstream outside wall, where mean flow impingement occurs. This heat transfer is increased with the presence of a rib. Including a rib in the bend increases the friction factor in the bend by 80%, and it increases the heat transfer augmentation by approximately 20%, resulting in a trade-off between pressure drop and heat transfer.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3