Performance Modeling of Desiccant Wheels: 1 — Model Development

Author:

Zhai Chaoqin1,Archer David H.1,Fischer John C.2

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

2. SEMCO Incorporated, Columbia, MO

Abstract

This paper presents the development of an equation based model to simulate the combined heat and mass transfer in the desiccant wheels. The performance model is one dimensional in the axial direction. It applies a lumped formulation in the thickness direction of the desiccant and the substrate. The boundary conditions of this problem represent the inlet outside/process and building exhaust/regeneration air conditions as well as the adiabatic condition of the two ends of the desiccant composite. The solutions of this model are iterated until the wheel reaches periodic steady state operation. The modeling results are obtained as the changes of the outside/process and building exhaust/regeneration air conditions along the wheel depth and the wheel rotation. This performance model relates the wheel’s design parameters, such as the wheel dimension, the channel size and the desiccant properties, and the wheel’s operating variables, such as the rotary speed and the regeneration air flowrate, to its operating performance. The impact of some practical issues, such as wheel purge, residual water in the desiccant and the wheel supporting structure, on the wheel performance has also been investigated.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3