Numerical Investigation of the Performance of a Forced Draft Air-Cooled Heat Exchanger

Author:

Engelbrecht Ruan A.1,Van der Spuy Johan1,Meyer Chris J.1,Zapke Albert2

Affiliation:

1. Stellenbosch University, Stellenbosch, South Africa

2. Enexio Management GmbH, Herne, Germany

Abstract

This paper details the design, validation and verification of two implicit modelling techniques used to model an Air-Cooled Condenser (ACC) in the computational fluid dynamics (CFD) code environment of OpenFOAM (Open Source Field And Manipulation). The actuator disk model was chosen as the axial flow fan model and the heat exchanger model was implemented as an A-frame, or Delta frame, heat exchanger commonly found on power stations. Both models were validated and verified. A 30 fan ACC was verified against previous literature. The results for all validation and verification procedures showed good agreement with respective data. Three different fan configurations in an ACC were compared at different wind speeds namely the A-fan, B2a-fan and a Combined ACC. The study showed small differences between ACCs with regard to fan and thermal performance. However, the B2a-fan ACC consumed 20% less power than the A-fan ACC and 3–10% less power than the Combined ACC. This performance increase was most prominently show-cased by the increased heat-to-power ratio with the B2a-fan exhibiting heat-to-power ratios of 110 W/W compared to 96 W/W for the A-fan.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling a Large Air-Cooled Condenser;MATEC Web of Conferences;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3