Prediction of Flammability Limits of Gas Mixtures Containing Inert Gases Under Variable Temperature and Pressure Conditions

Author:

Bounaceur Roda1,Glaude Pierre-Alexandre1,Sirjean Baptiste1,Fournet René1,Montagne Pierre2,Vierling Matthieu2,Molière Michel3

Affiliation:

1. Université de Lorraine, Nancy, France

2. GE Energy Product-Europe, Belfort, France

3. Université de Technologie de Belfort Montbéliard, Belfort, France

Abstract

Gas turbines burn a large variety of gaseous fuels under elevated pressure and temperature conditions. During transient operations like maintenance, start-ups or fuel transfers, variable gas/air mixtures flow through the gas piping system and can cause damages in case of ignition. In order to properly control this risk of explosion and ensure safe operation, it is of the essence to have a good knowledge of the flammability limits of the gas mixtures involved, and to be in position to define safe inerting conditions every time it is required. While well-established methods are available in the engineering science to calculate flammability limits of fuel/air mixtures, no systematic methodology exists — to the authors’ knowledge — for the prediction of the Lower and Upper Flammability Limits (UFL-LFL) of gaseous blends containing variable amounts of inert components and over a large temperature and pressure range. The purpose of this study was then the evaluation of the LFL and UFL of multi-component fuels in air, in function of pressure, temperature and the concentrations of the most frequently used inerting gases, namely: nitrogen, carbon dioxide and steam. Different prediction criteria proposed in the literature were tested and eventually an original methodology based on the adiabatic flame temperature (Tad) was adopted as criterion and extended to gas mixtures and to high temperatures and pressures. Flame temperatures of different blends were calculated for different initial conditions assuming the access to the chemical equilibrium. Minimum temperature criteria corresponding to the Tad values reached at the LFL and UFL equivalence ratios were deduced from experimental data for each individual combustible molecule. It has been then possible to evaluate the minimum Tad values which ensure flame propagation of fuel blends on the lean and rich sides and to deduce the flammability limits. These calculations were repeated while adding various contents of the three selected inert gases. The methodology was validated by comparison against experimental data when available. The method proves to be simple, accurate, easy to use and applicable to large ranges of pressure, temperature and fuel compositions and to various diluents. The results confirm and quantify some well-known trends of flammability limits, e.g. their widening with increasing initial temperature and pressure, with a stronger effect on UFL than on LFL. The impact of the nature of the inerting gas was also successfully simulated for variable initial conditions and fuel compositions.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3