System Eigenvalue Identification of Mistuned Bladed Disks Using Least-Squares Complex Frequency-Domain Method

Author:

Huang Yuan1,Dimitriadis Grigorios2,Kielb Robert E.1,Li Jing1

Affiliation:

1. Duke University, Durham, NC

2. University of Liège, Liège, Belgium

Abstract

This paper presents the results from a research effort on eigenvalue identification of mistuned bladed rotor systems using the Least-Squares Complex Frequency-Domain (LSCF) modal parameter estimator. The LSCF models the frequency response function (FRF) obtained from a vibration test using a matrix-fraction description and obtains the coefficients of the common denominator polynomial by minimizing the least squares error of the fit between the FRF and the model. System frequency and damping information is obtained from the roots of the denominator; a stabilization diagram is used to separate physical from mathematical poles. The LSCF estimator is known for its good performance when separating closely spaced modes, but few quantitative analyses have focused on the sensitivity of the identification with respect to mode concentration. In this study, the LSCF estimator is applied on both computational and experimental forced responses of an embedded compressor rotor in a three-stage axial research compressor. The LSCF estimator is first applied to computational FRF data obtained from a mistuned first-torsion (1T) forced response prediction using FMM (Fundamental Mistuning Model) and is shown to be able to identify the eigenvalues with high accuracy. Then the first chordwise bending (1CWB) computational FRF data is considered with varied mode concentration by varying the mistuning standard deviation. These cases are analyzed using LSCF and a sensitivity algorithm is developed to evaluate the influence of the mode spacing on eigenvalue identification. Finally, the experimental FRF data from this rotor blisk is analyzed using the LSCF estimator. For the dominant modes, the identified frequency and damping values compare well with the computational values.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3