Development and Validation of an On-Wing Engine Thrust Measurement System

Author:

Bauer Marc1,Friedrichs Jens1,Wulff Detlev1,Werner-Spatz Christian2

Affiliation:

1. Technische Universität Braunschweig, Braunschweig, Germany

2. Lufthansa Technik AG, Hamburg, Germany

Abstract

Maintenance on aircraft engines is usually performed on an on-condition basis. Monitoring the engine condition during operation is an important prerequisite to provide efficient maintenance. Engine Condition Monitoring (ECM) has thus become a standard procedure during operation. One of the most important parameters, the engine thrust, is not directly measured, however, and can therefore not be monitored, which makes it difficult to distinguish whether deteriorating trends e.g. in fuel comsumption must be attributed to the engine (e.g. due to thermodynamic wear) or to the aircraft (e.g. due to increased drag). Being able to make this distinction would improve troubleshooting and maintenance planning and thus help to reduce the cost of ownership of an aircraft. As part of the research project APOSEM (Advanced Prediction of Severity effects on Engine Maintenance), Lufthansa Technik (LHT) and the Institute of Jet Propulsion and Turbomachinery of Technische Universität Braunschweig develop a method for direct measurement of engine thrust during the operation. In this paper, the design process of the On-Wing (OW) Measurement System is presented, including the validation in labratory tests, the mechanical and thermal calibration as well as the final ground test during an engine test run at LHT test cell and the work on the flight test certification.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Method for Measuring Engine Thrust with Tensometry Data;Systems, Decision and Control in Energy I;2020

2. Researches of the Stressed-Deformed State of the Power Structures of the Plane;Systems, Decision and Control in Energy I;2020

3. The thrust measurement system research for combined nozzle in small space;Transactions of the Institute of Measurement and Control;2018-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3