Commissioning of Split Power Offtake on a Twin-Spool More Electric Engine Demonstrator

Author:

Kreuzer Susanne1,Niehuis Reinhard1

Affiliation:

1. Universität der Bundeswehr München, Neubiberg, Germany

Abstract

More electric and all electric aircraft were already discussed in the eighties of the last century, but recent political and ecological issues now reinforce the electrification of aircraft and engine systems. The development of electric machines and components with increasing power to weight ratio enables the installation of power optimized electric accessories instead of pneumatic and hydraulic systems in order to raise overall efficiency and specific fuel consumption of the engine. While pneumatic and hydraulic components are driven by the aircraft engine, a major challenge is in the supply of electric energy. Storage systems lack in reliability and light weight, fuel cell technology is limited to small aircraft and needs further development in various technical disciplines. An appropriate option is the generation of electric power by engine integrated generators. Performance calculations state increased efficiency by means of split spool power offtake, but have not been validated by a real twin-spool demonstrator yet. At the ground test facility of the Institute of Jet Propulsion a demonstrator engine has been set up for detailed research on the influence of power extraction from a Larzac 04 C5 jet engine. To facilitate the test vehicle for power offtake of two spools the starter-generator has been complemented by a second generator, which is installed in front of the compressor inlet. It is axially connected to the low pressure spool by a coupling and a special flange mounted onto the low pressure spool. Several subsystems enabling for electric power offtake are integrated into the facilities’ data acquisition system (DAQ) and communication structure. The added components influence the engine in various ways: They manipulate power balance of the spools and alter the inlet pressure distribution and the compressor aerodynamics. Additionally the internal flow distribution is changed as well as the vibration characteristics. Before starting with extensive more electric engine (MEE) power offtake test campaigns, all systems need to be installed and tested successively. This paper describes the test facility and fundamental more electric engine subsystems, with special focus put on instrumentation and system communication. A first function test demonstrates the operability of the engine after the modification of the low pressure spool. In a further step the influence of the inlet modification onto the compressor inlet aerodynamics, total mass flow, and vibrations of the test vehicle is analyzed. The vibration characteristics are vital for the coupling functionality, which is demonstrated subsequently. Presenting the load system check, special focus is given to communication, load definition, and electromagnetic compatibility. Comparisons to component performance predictions and to the performance of the original engine configuration are drawn for all tests and new limits for the operation of the new more electric configuration are defined. Finally, first data of power offtake of two spools is presented to demonstrate the operability of the MEE test vehicle.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Critical Technologies for Making a More Electric Engine;Journal of Machinery Manufacture and Reliability;2022-12

2. Electric Power Transfer Concept for Enhanced Performance of the More Electric Engine;Journal of Engineering for Gas Turbines and Power;2021-04-19

3. Performance Improvement of Turbofans by Electric Power Transfer;Journal of Turbomachinery;2020-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3