Determining Stress in Turbocharger Impellers due to Component Machining Process

Author:

Barrans Simon M.1,Tabriz Md Shams E.1,Ellis Christian F.2

Affiliation:

1. University of Huddersfield, Huddersfield, UK

2. BorgWarner Turbo Systems, Bradford, UK

Abstract

Turbocharger impeller wheels are traditionally manufactured using a casting process. However, with the improvement of multi-axial machining technology, machined impeller wheels are becoming popular among turbo machinery manufacturers due to their enhanced durability. Nonetheless, machining a complex impeller shape from a solid billet, results in tool marks being left on the component surface. As presented in this paper, repeatedly running a wheel to 5% beyond the design speed limit can result in fatigue failure initiating from the machining marks. In this paper, the ‘as machined’ geometry of sample wheels has been determined using both CT scanning and optical surface measurement techniques. The data from these measurements has been used to generate solid CAD models suitable for finite element analysis to simulate the stress distribution of reverse engineered wheels. The maximum principal stress predicted is 15% higher than that obtained from the nominal CAD model. In order to model the measured geometry efficiently, a novel technique has been used to enforce cyclic symmetry on geometry that is not precisely cyclically symmetric. The work has demonstrated that it is possible to predict the stress raising effect of the machining marks at the design stage. The analysis methodology presented in the paper will enable future integrated optimisation of both the design and manufacture of impeller wheels to ensure that wheels with a specified operating envelope are machined as efficiently as possible.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Areal Decomposition Methodology for a 5-Axis Milled Surface;Advances in Manufacturing Engineering and Materials II;2021

2. Increasing Compressor Wheel Fatigue Life Through Residual Stress Generation;Advances in Manufacturing Engineering and Materials;2018-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3