Analysis of the Propagation of Plane Elastic-Plastic Waves at Finite Strain

Author:

Lee E. H.1,Wierzbicki T.1

Affiliation:

1. Division of Engineering Mechanics, Stanford University, Stanford, Calif.

Abstract

The propagation of plane elastic-plastic waves of one-dimensional strain is analyzed. Such waves are generated by the detonation of explosives in contact with the surfaces of plates and by impact of plates and are commonly utilized for measuring material characteristics under high pressures. Only one nonzero displacement component occurs—that normal to the plate surface. The resulting dilatation leads to dominant thermomechanical coupling effects, and these, and influences of finite strain, are included in the analysis. Because plasticity plays a secondary role, a simple rate-independent theory is adequate. Since heat conduction can be neglected because of the high speed of wave propagation, the dynamic equations and the constitutive relations are effectively uncoupled, and the problem reduces to one in the classical Karman-Taylor-Rakhmatulin theory of plastic waves. Appropriate stress-strain relations for inclusion in that theory are developed here for an aluminum alloy. The analysis for shock propagation is also given.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Nonlinear Mechanics of Crystals;2010-10-18

2. Study of the structural damage in the (0001) GaN epilayer processed by laser lift-off techniques;Applied Physics Letters;2007-09-17

3. References;Foundations of Stress Waves;2007

4. A contribution to the numerical nonlinear analysis of three-dimensional truss systems considering large strains, damage and plasticity;Communications in Nonlinear Science and Numerical Simulation;2005-08

5. Strain energy density failure criterion;International Journal of Solids and Structures;2001-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3