Computational Model of Mechano-Electrochemical Effect of Aluminum Alloys Corrosion

Author:

Ali Hessein1,Stein Zachary1,Fouliard Quentin1,Ebrahimi Hossein1,Warren Peter1,Raghavan Seetha1,Ghosh Ranajay1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816

Abstract

Abstract Stress corrosion is a critical issue that leads to high costs in lost equipment and maintenance, affecting the operation and safety of aircraft platforms. Most aerospace structural components use the aluminum alloys 7xxx series, which contain Al, Cu, Zn, and Mg, due to the combined advantage of its high-strength and lightweight. However, such alloys, specifically AA7075-T4 and AA7075-T651, are susceptible to stress corrosion cracking when exposed to both mechanical stresses and corrosive environments. Stress corrosion cracking gives rise to a major technological challenge affecting aerospace systems as it leads to the degradation of mechanical properties. In addition, such corrosion presents an important yet complex modeling challenge due to the synergistic action of sustained tensile stresses and an aggressive environment. In light of this, we develop a finite element multiphysics model to investigate the interplay of mechanical loading and electrochemistry on the stress corrosion of aluminum alloys. The model includes a multiphysics coupling technique through which the kinetics of corrosion can be predicted in the presence of elastic and plastic deformation modes. The presented model provides useful information toward the kinetics of corrosion via tracking localized corrosion and stress distribution. Although the model is general, it has been made considering the characteristics of AA7xxx series, more specifically, taking AA7075.

Funder

Defense Advanced Research Projects Agency

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference42 articles.

1. Application of Modern Aluminum Alloys to Aircraft;Prog. Aerosp. Sci.,1996

2. Recent Developments of Materials Used in Air Breathing and Advanced Air Breathing Engines;IOP Conf. Ser.: Mater. Sci. Eng.,2020

3. Ballistic Impact Behaviour of Stiffened Aluminium Plates for Gas Turbine Engine Containment System;Int. J. Crashworthiness,2017

4. Lightweight Materials for Aircraft Applications;Mater. Charact.,1995

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3