An Accurate Spatial Discretization and Substructure Method With Application to Moving Elevator Cable-Car Systems—Part I: Methodology

Author:

Zhu W. D.1,Ren H.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

Abstract

A spatial discretization and substructure method is developed to accurately calculate dynamic responses of one-dimensional structural systems, which consist of length-variant distributed-parameter components, such as strings, rods, and beams, and lumped-parameter components, such as point masses and rigid bodies. The dependent variable of a distributed-parameter component is decomposed into boundary-induced terms and internal terms. The boundary-induced terms are interpolated from boundary motions, and the internal terms are approximated by an expansion of trial functions that satisfy the corresponding homogeneous boundary conditions. All the matching conditions at the interfaces of the components are satisfied, and the expansions of the dependent variables of the distributed-parameter components absolutely and uniformly converge if the dependent variables are smooth enough. Spatial derivatives of the dependent variables, which are related to internal forces/moments of the distributed-parameter components, such as axial forces, bending moments, and shear forces, can be accurately calculated. Combining component equations that are derived from Lagrange's equations and geometric matching conditions that arise from continuity relations leads to a system of differential algebraic equations (DAEs). When the geometric matching conditions are linear, the DAEs can be transformed to a system of ordinary differential equations (ODEs), which can be solved by an ODE solver. The methodology is applied to several moving elevator cable-car systems in Part II of this work.

Publisher

ASME International

Subject

General Engineering

Reference43 articles.

1. Forced Response of Translating Media With Variable Length and Tension: Application to High-Speed Elevators;Proc. Inst. Mech. Eng., Part K,2005

2. Numerical Methods for the Simulation of Turbulence;Phys. Fluids,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3