Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface

Author:

Gonza´lez J. E.1,Black W. Z.2

Affiliation:

1. Department of Mechanical Engineering, University of Puerto Rico-Mayagu¨ez, Mayagu¨ez, Puerto Rico 00680

2. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

This paper concerns a quantitative assessment of the heat and mass transfer behavior of spray droplets, downward oriented prior to their impact on a heated horizontal surface. An experimental and theoretical investigation of the coupling effects between a downward oriented spray and a rising saturated buoyant jet that results from evaporation of the spray on a heated surface has been successfully completed. A model describing the coupled thermal and hydrodynamic behavior of both the spray and the saturated buoyant jet has been developed. An experimental set-up involving a high speed photographic apparatus has been used to observe in-flight monodispersed sprays and to measure the diameter and the velocity of droplets as they approach the heated surface. The theoretical and experimental results indicate that the temperature of the saturated buoyant jet is highly affected by the presence of a subcooled spray and small droplet sprays, vertically projected, experience high condensation rates as they pass through the saturated buoyant jet, reaching the saturation temperature before impacting on the heated surface, as well as experience acceleration as a consequence of an increase in mass due to the condensation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3