Multifeature-Fitting and Shape-Adaption Algorithm for Component Repair

Author:

Liu Renwei1,Wang Zhiyuan1,Liou Frank2

Affiliation:

1. Laser-Aided Manufacturing Processes Lab, Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409 e-mail:

2. Michael and Joyce Bytnar Product Innovation and Creativity Professor Laser-Aided Manufacturing Processes Lab, Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409 e-mail:

Abstract

In recent years, the usage of additive manufacturing (AM) provides new capabilities for component repair, which includes low heat input, small heat-affected zone, and freeform near-net-shape fabrication. Because the geometry of each worn component is unique, the automated repair process is a challenging and important task. The focus of this paper is to investigate and develop a general best-fit and shape-adaption algorithm for automating alignment and defect reconstruction for component repair. The basic principle of using features for rigid-body best-fitting is analyzed and a multifeature-fitting method is proposed to best fit the 3D mesh model of a worn component and its nominal component. The multifeature-fitting algorithm in this paper couples the least-squares method and a density-based outlier detection method. These two methods run alternately to approach the best-fit result gradually and eliminate the disturbance caused from the defect geometry. The shape-adaption algorithm is used to do cross section comparison and defect reconstruction based on the best-fitted 3D model. A “point-line-surface” fracture surface detection method is proposed to construct fracture surface and the fracture surface boundary is dilated to trim the nominal 3D model to obtain defect geometry. Illustrative examples with typical components and different kinds of defects are used to demonstrate the flexibility and capability of using multifeature-fitting and shape-adaption algorithm developed in this paper.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3