Affiliation:
1. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305
Abstract
An analytical investigation was performed to study the effect of delamination on the response of cylindrical composite shells subjected to external loadings. It was of particular interest to determine the buckling load and the post-buckling behavior of externally pressurized cylindrical composite shells containing delaminations. An analytical model was developed that consists of a structural analysis for calculating the global deformations of the structures and a fracture analysis for determining the delamination growth in the structures. A nonlinear finite element code based on the updated Lagrangian formulation was developed for the model. Based on the results of calculations, it was found that delamination can significantly affect the buckling load and response of cylindrical composite shells subjected to externally pressurized loadings, depending upon the initial length and location of the delamination, ply orientation and laminate curvature. The calculated strain energy release rate at the crack tips indicates that delamination growth occurs in the wake of buckling due to Mode II shear fracture.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献