Unrecoverable Strain Hardening in Torsionally Strained OFHC Copper

Author:

Field D. P.1,Adams B. L.1

Affiliation:

1. Yale University, Department of Mechanical Engineering, New Haven, CT 06520

Abstract

This paper investigates the recoverable and unrecoverable components of strain hardening in OFHC copper tubing subjected to torsional strain. Individual hardening components are classified and the magnitude of each is experimentally determined. Recoverable strain hardening is defined to be the difference between the final shear stress and the yield stress measured after recovery annealing. The recoverable hardening, due primarily to dislocation pileups, accounts for about 95.5 percent of the measured strain hardening at a shear strain of 1.9. Crystal lattice rotation during shear strain accounts for a portion of the unrecoverable hardening at shear strains less than .25, but becomes a strain softening effect at shear strains above .5. The evolution of the texture is measured experimentally and analyzed using both Taylor’s and Kochendorfer’s models. Texture evolution is also simulated up to a shear strain of 2.0 using Taylor’s model. This simulation yields similar results to the measured texture in determining strain hardening caused by rotation of the crystal lattice. The softening effect of crystalline reorientation accounts for a decrease in the observable hardening of 1.5 percent at a shear strain of 1.9.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Torsion/Simple Shear of Single Crystal Copper;Journal of Engineering Materials and Technology;2002-06-10

2. Characterization of Deformed Microstructures;Electron Backscatter Diffraction in Materials Science;2000

3. Simulation of the behaviour of FCC polycrystals during reversed torsion;International Journal of Plasticity;1996-01

4. INTERGRANULAR CRACKING IN ALUMINUM-ALLOYS;CAN METALL QUART;1995

5. Intergranular Cracking in Aluminum Alloys;Canadian Metallurgical Quarterly;1995-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3