The Use of Hot-Wire Anemometry to Investigate Unsteady Wake-Induced Boundary-Layer Development on a High-Lift LP Turbine Cascade

Author:

Wolff Stefan1,Brunner Stefan1,Fottner Leonhard1

Affiliation:

1. Institut fu¨r Strahlantriebe, Universita¨t der Bundeswehr Mu¨nchen, D-85577 Neubiberg, Germany

Abstract

Recent research has revealed positive effects of unsteady flow on the development of boundary layers in turbine cascades, especially at conditions with a laminar suction side separation bubble at low Reynolds numbers. Compared to steady flow, a reduction of total pressure loss coefficient over a broad range of Reynolds numbers has been shown. Taking into account the positive effects of wake-induced transition already during the design process, new high lift bladings with nearly the same low losses at unsteady inlet flow conditions could be achieved. This leads to a reduction of weight and cost of the whole turbine module for a constant stage loading. Unsteady flow in turbomachines is caused by the relative motion of rotor and stator rows. For simulating a moving blade row upstream of a linear cascade in the High-Speed Cascade Wind Tunnel of the Universita¨t der Bundeswehr Mu¨nchen, a wake generator has been designed and built. The wakes are generated with bars, moving with a velocity of up to 40 m/s in the test section upstream of the cascade inlet plane. Unsteady flow causes the transition on the surface of the suction side of a low-pressure turbine blade to move upstream whenever an incoming wake is present on the surface; moreover, a laminar separation bubble can be diminished or even suppressed. In order to detect the effects of wakes on the boundary layer development a new hot wire data acquisition system is required. Due to the fact that hot wires give a good insight into boundary layer development, a new hot-wire data acquisition system has been set up. The anemometry system can acquire four channels simultaneously, therefore being capable of logging a triple hot-wire sensor and a bar trigger simultaneously. One further channel is utilized for a once-per-revolution trigger. The once-per-revolution trigger is used to start the measurement of one data block. Using the well-established ensemble-averaging technique, 300 ensembles each consisting of five wake passing periods have been acquired. Ensemble averaging can be directly performed without any data reduction. The adaptation of this new hot-wire anemometry data acquisition system to the High-Speed Cascade Wind Tunnel of the Universita¨t der Bundeswehr Mu¨nchen is pointed out. First, results on unsteady periodic boundary layer development of a highly loaded low-pressure turbine cascade under unsteady inlet flow conditions are presented. During the present investigation four boundary layer traverses, ranging from x/lax=0.82 to x/lax=0.99 (suction side), at steady and unsteady inlet flow conditions Ubar=10 m/s at an outlet Reynolds number of Re2th=100,000 have been conducted. [S0889-504X(00)00204-X]

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3