Dimensional Deviation Prediction Model Based on Scale and Material Concentration Effects for LPBF Process

Author:

Ben Amor Sabrine1,Zongo Floriane2,Louhichi Borhen1,Tahan Antoine2,Brailovski Vladimir2

Affiliation:

1. University of Sousse , Sousse, Tunisia

2. École de technologie supérieure (ÉTS) , Montréal, Quebec, Canada

Abstract

Abstract Additive Manufacturing (AM) processes generate parts layer-by-layer without using formative tools. The resulting advantages highlight the capability of AM to become an inherent part of product development. However, process-specific challenges such as high surface roughness, the stair-stepping effect, or dimensional deviations inhibit the establishment of AM at the industrial scale. Thus, AM parts often need to be post-processed using established manufacturing processes. Many process parameters and geometrical factors influence the dimensional accuracy in AM. Published results relating to these deviations are also difficult to compare because they are based on several geometries that are manufactured using different processes, materials, and machine settings. Laser Powder Bed Fusion (LPBF) is gaining in popularity, but one of the obstacles facing its larger industrial use is the limited knowledge of its dimensional and geometrical performances. Therefore, using it requires studying the process and improving the accuracy of the parts involved. This paper represents a new attempt to predict dimensional deviations of LPBF parts. During the project, the scale- and material concentration-related phenomena were implemented in a new image analysis model and applied to the as-built part. We carried out a comparison between the results of the proposed model with those obtained from numerical analyses and experiments. The model does not use finite element analysis, takes less time to compute, and provides reasonable prediction accuracy.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3