Extended Environmental Contour Methods for Long-Term Extreme Response Analysis of Offshore Wind Turbines1

Author:

Chen Xiaolu1,Jiang Zhiyu2,Li Qinyuan3,Li Ye4,Ren Nianxin5

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Department of Engineering Sciences, University of Agder, Grimstad 4879, Norway

3. Department of Marine Technology, Norwegian University of Science and Technology, Trondheim 7052, Norway

4. State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Key Laboratory of Hydrodynamics (Ministry of Education), Multi-function Towing Tank, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

5. State Key Laboratory of Marine Resource Utilization in South China Sea, College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China

Abstract

Abstract Environmental contour method is an efficient method for predicting the long-term extreme response of offshore structures. The traditional environmental contour is obtained using the joint distribution of mean wind speed, significant wave height, and spectral peak period. To improve the accuracy of traditional environmental contour method, a modified method was proposed considering the non-monotonic aerodynamic behavior of offshore wind turbines. Still, the modified method assumes constant wind turbulence intensity. In this paper, we extend the existing environmental contour methods by considering the wind turbulence intensity as a stochastic variable. The 50-year extreme responses of a monopile-based offshore wind turbine are compared using the extended environmental contour methods and the full long-term method. It is found that both the environmental contour method and the modified environmental contour method, with the wind turbulence intensity included as an individual variable, give more accurate predictions compared with those without. Using the full long-term method as a benchmark, this extended approach could reduce the nonconservatism of the environmental contour method and conservatism of the modified environmental contour method. This approach is effective under wind-dominated or combined wind-wave loading conditions, but may not be as important for wave-dominated conditions.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3