A Mathematical Model for Pressure Compensating Emitters

Author:

Taylor Katherine A.1,Shamshery Pulkit1,Wang Ruo-Qian1,Winter Amos G.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

This paper presents a mathematical model investigating the physics behind pressure-compensating (PC) drip irrigation emitters. A network of PC emitters, commonly known as drip irrigation, is an efficient way to deliver water to crops while increasing yield. Irrigation can provide a means for farmer to grow more sensitive, and profitable crops and help billions of small-holder farmers lift themselves out of poverty. Making drip irrigation accessible and economically viable is important for developing farmers as most face the challenges of water scarcity, declining water tables and lack of access to an electrical grid. One of the main reasons for the low adoption rate of drip irrigation in the developing world is the relatively high cost of the pumping power. It is possible to reduce this cost by reducing the required activation pressure of the emitters, while maintaining the PC behavior. The work presented here provides a guide of how design changes in the emitter could allow for a reduction in the activation pressure from 1 bar to approximately 0.1 bar. This decrease in the activation pressure of each emitter in turn decreases the system driving pressure. This reduction of driving pressure will decrease the energy need of pumping, making a solar-powered system affordable for small-acreage farmers. This paper develops a mathematical model to describe the PC behavior in a commercially available emitter. It is a 2D model that explains the relationship between the pressure, structural deformation and fluid flow within a PC emitter. A parametric study has been performed to understand the effects of geometric and material parameters with regards to the activation pressure and PC behavior. This knowledge will help guide the designs and prototypes of optimized emitters with a lower activation pressure, while also providing the PC behavior.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3