A Product Feature Inference Model for Mining Implicit Customer Preferences Within Large Scale Social Media Networks

Author:

Tuarob Suppawong1,Tucker Conrad S.1

Affiliation:

1. The Pennsylvania State University, University Park, PA

Abstract

The acquisition and mining of product feature data from online sources such as customer review websites and large scale social media networks is an emerging area of research. In many existing design methodologies that acquire product feature preferences form online sources, the underlying assumption is that product features expressed by customers are explicitly stated and readily observable to be mined using product feature extraction tools. In many scenarios however, product feature preferences expressed by customers are implicit in nature and do not directly map to engineering design targets. For example, a customer may implicitly state “wow I have to squint to read this on the screen”, when the explicit product feature may be a larger screen. The authors of this work propose an inference model that automatically assigns the most probable explicit product feature desired by a customer, given an implicit preference expressed. The algorithm iteratively refines its inference model by presenting a hypothesis and using ground truth data, determining its statistical validity. A case study involving smartphone product features expressed through Twitter networks is presented to demonstrate the effectiveness of the proposed methodology.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contract Price Negotiation Using an AI-Based Chatbot;Applications of Emerging Technologies and AI/ML Algorithms;2023

2. Designing and connectivity checking of implicit social networks from the user-item rating data;Multimedia Tools and Applications;2021-05-06

3. Extracting Customer Perceptions of Product Sustainability From Online Reviews;Journal of Mechanical Design;2019-10-03

4. Automated Discovery of Product Feature Inferences Within Large-Scale Implicit Social Media Data;Journal of Computing and Information Science in Engineering;2018-05-02

5. Sentiment Analysis of Specific Product’s Features Using Product Tree for Application in New Product Development;Advances in Intelligent Networking and Collaborative Systems;2017-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3