Affiliation:
1. University of Texas Arlington Research Institute, Fort Worth, TX
Abstract
This paper presents the design and development of a pneumatic soft-and-rigid hybrid actuator system that consists of half-bellow shaped soft sections in-between block shape rigid sections. The hybrid actuator architecture allows for selective actuation of each soft section (acting as a joint) with precise control over its bending motion. The soft half-bellow section is designed as a series of hollow ridges extending straight to a flat base. This geometry provides forward and backward bending motion when subjected to positive and negative pressure, respectively. Bending occurs as the ridges of the soft section expand and contract more than the flat base due to pressure variations. The rigid sections serve as connections between soft actuator sections and enhance force transfer. As a case study, a hybrid actuator system was designed as a soft robotic digit with three soft joints and four rigid connecting sections. Finite element analysis was performed to evaluate the design parameters such as number of ridges and materials for the robotic finger. The joints (from proximal to distal) were designed to have four, three, and two ridges, respectively, to generate the desired range of angular motion. Fabrication of the finger was done with silicone rubber RTV-4234-T4 and PMC polyurethane rubber using a combination of compression molding and overmolding processes. The angular and translational displacements of the robotic finger were experimentally and numerically evaluated at different pressures. The trajectory of the fingertip is comparable to those reported in literature for continuous soft actuators with a similar length. The significance of this actuator system is that both range of angular and translational motions are achieved at low pressure, less than 70kPa, as opposed to reported pressures of greater than 100kPa. The presented results show the great potential of the soft robotic finger for use in robotic, rehabilitation, and assistive device applications.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献