Multi-Objective Optimal Regulation of Glucose Concentration in Type I Diabetes Mellitus

Author:

Shaker Raya Abu1,Sardahi Yousef2,Alshorman Ahmad1

Affiliation:

1. Mechanical Engineering Department, Jordan University of Science and Technology , Irbid 22110, Jordan

2. Mechanical Engineering Department, Marshall University, Huntington , WV 25303

Abstract

Abstract Type I, or insulin-dependent diabetes mellitus, is a chronic disease in which insulin is not adequately produced by the pancreatic β-cells, which leads to a high glucose concentration. In practice, external insulin delivery is the only method to deal with this disease. To this end, a multi-objective optimal control for insulin delivery is introduced in this paper. Three conflicting objectives, including minimizing the risk of hypoglycemia and hyperglycemia, and reducing the amount of injected insulin, are considered. These objectives are minimized simultaneously while tuning the closed-loop system parameters that include the design details of the linear-quadratic regulator (LQR) and estimator speed of convergence. The lower and upper bounds of the LQR setup parameters are determined by Bryson’s rule taking into account the nominal glucose range (70−160  mg/dL) and maximum and minimum pump infusion rates (0.0024−15 mU/min). The lower and upper bounds of the estimator convergence speed are chosen such that the estimator is faster than the fastest mode of the closed-loop system. For computer simulations, Bergman’s minimal model, which is one of the commonly used models, is employed to simulate glucose-insulin dynamics in Type-I diabetic patients. The optimization problem is solved by the nondominated sorting genetic algorithm (NSGA-II), one of the widely used algorithms in solving multi-objective optimization problems (MOPs). The optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained and analyzed. The results show that the MOP solution introduces many optimal options from which the decision-maker can choose to implement. Furthermore, under high initial glucose levels, parametric variations of Bergman’s model, and external disturbance, the optimal control performance are tested to show that the system can bring glucose levels quickly to the desired value regardless of high initial glucose concentrations, can efficiently work for different patients, and is robust against irregular snacks or meals.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3