Computer Assisted Design and Structural Topology Optimization of Customized Craniofacial Implants

Author:

Gómez Pérez Carlos A.1,Medellín-Castillo Hugo I.1,Espinosa-Castañeda Raquel1

Affiliation:

1. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México

Abstract

Modern design and manufacturing engineering technologies have greatly improved the way in which modern craniofacial implants are designed and fabricated. However, few efforts have been made in order to optimize their design. While the weight of polymer-based implants (e.g. PMMA implants) may not affect the patient’s comfort, the higher weight of metal-based implants (e.g. titanium implants), could greatly affect the patient’s comfort, causing in some cases nuisances and imbalance problems. Thus, the optimization of the implant becomes relevant in order to guarantee its structural stiffness but with a reduced weight. In this paper, the design and structural optimization of customized craniofacial implants based on the use of modern engineering technologies is presented. The aim is to introduce an engineering methodology for the design and optimization of customized craniofacial implants. The methodology starts from the patient’s medical images, obtained from a computerized tomography (CT), which are processed to reconstruct the digital 3D model. Next, the geometrical design of the implant is carried out in a computer aided design (CAD) system using the patient’s 3D model. Then, the structural analysis of the implant is performed using the Finite Element Method (FEM) and considering a quasi-static load. The topology optimization of the implant is made using the Solid Isotropic Material Penalization (SIMP) method. Finally, the optimized customized implant is fabricated in an additive manufacturing (AM) system. A case study of a craniofacial implant is presented and the results reveal that the proposed methodology is an effective approach to design and optimize craniofacial implants.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3