Investigating the Effects of Stent-Graft Structural Features Using Computational Fluid Dynamics

Author:

Looyenga Eric M.1,Propst Aaron M.1,Gent Stephen P.1

Affiliation:

1. South Dakota State University, Brookings, SD

Abstract

The objective of this study was to assess the effects structural features of endovascular stent-grafts used to repair abdominal aortic aneurysms (AAA) have on the flow mechanics and near-wall hemodynamics using Computational Fluid Dynamics (CFD) simulations. This research compared two test case model representations: 1) a stent graft that included the wire struts in the graft walls, and 2) a stent graft that excluded the struts in the computational mesh. The two computer-aided design models were created to represent a bifurcated stent graft in the abdominal aorta, with the stent beginning in the thoracic region of the aorta and branching into the common iliac arteries. The geometries were imported as surface meshes into a commercially available CFD solver. Both models account for viscous pulsatile blood flow of the cardiac cycle using blood properties gathered from previous research. Results of the two simulations were compared by using established metrics, including oscillating shear index (OSI), time average wall shear stress (TAWSS), and relative residence time (RRT), all of which are used to predict the likelihood of clot formation, endothelial damage, and device failure. Scalar and vector scenes allow for visualization, and data was exported for quantifying threshold results of the parameters. Due to the expense of stent grafts and the risks involved with clinical trial, CFD modeling is becoming more prominent in endovascular repair of aneurysms. The overarching goal of this study is to enhance current models of stent grafts, which can potentially be used to complement clinical trial for stent graft development.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3