Theoretical Range and Trajectory of a Water Jet

Author:

Trettel Ben1,Ezekoye Ofodike A.1

Affiliation:

1. University of Texas at Austin, Austin, TX

Abstract

The trajectory of a water jet is important in many applications, including fire protection, irrigation, and decorative fountains. Increasing the maximum distance the jet travels by changing the nozzle or other variables is often desirable. This distance could be the horizontal range (also often called the reach or throw) or the maximum vertical height. Which factors control the trajectory are unclear. Consequently, a simple analytical model is developed which provides a qualitative understanding of the system. This model differs significantly from previous models. Previous models either used a dragless trajectory, which is correct according to potential flow theory if the jet does not break into droplets, or treated the trajectory as if droplets formed immediately upon leaving the nozzle. Both approaches have been noted to be unsatisfactory by past researchers. Our model compares favorably against available experimental data. Using our model, we show that the range decreases as the nozzle Froude number increases and that range increases as breakup length and droplet size increase.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3