POD Analysis of the Impact Dynamics of the Olive Tree Branch: Nature’s Paradigm of a Complex Soft-Stiff Structural System in Biomechanics

Author:

Georgiou Ioannis T.1

Affiliation:

1. National Technical University of Athens, Athens, Greece

Abstract

Geometry consistent spatio-temporal measurements of the experimental acceleration of olive tree branches were analyzed with advanced POD tools in an effort to gain knowledge on the mechanics-dynamics of this bio-mechanical structure. To pave the way for understanding the dynamics of this system, both the typical olive tree as a whole and its typical branch are approached as interacting soft-stiff continuum mechanical systems. The POD analysis reveals that the impact response is a nonlinear vibration with very fast dissipation. The POD modal amplitudes are nonlinear vibrations of continuous, broadband frequency spectrum. Initially they exhibit regular phases of nonlinear slow dissipation-and-amplification followed by irregular, fast dissipation-and-amplification phases. Sequentially applied impacts at the branch soft area results in a complete detachment of the fruit. The POD analysis reveals that this occurs because the response is highly localized in the soft area where the impact is applied and thus it transfers its momentum to the fruits. The work is supplemented with analysis of field measurements of the acceleration dynamics of orchard olive tree branches excited by harvesting devices generating combing clouds of impulsive forces aimed at detaching the olive fruit by momentum transfer.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3