Affiliation:
1. School of Industrial Engineering, Purdue University, West Lafayette, IN 47906
Abstract
This letter investigates a unique process to generate enhanced laser shock by applying an active liquid confinement—hydrogen peroxide (H2O2). The mechanism of fast chemical etching-assisted laser ablation is proposed. As a result, comparing with utilizing water as confinement, the efficiency of laser shock peening (LSP) of aluminum alloy 6061 with an active liquid confinement is improved by 150%, and the ablation rate of pulse laser ablation (PLA) of zinc is enhanced by 300%. This method breaks the major limitation of underwater pulsed laser processing caused by the breakdown plasma, with additional mechanisms to generate higher ablation rate and shock pressure under the same laser intensities.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献