Affiliation:
1. Institute of Fluid Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland
2. Department of Pediatrics, Cantonal Hospital, CH-1708 Fribourg, Switzerland
3. Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115
Abstract
The inhalation of micron-sized aerosols into the lung’s acinar region may be recognized as a possible health risk or a therapeutic tool. In an effort to develop a deeper understanding of the mechanisms responsible for acinar deposition, we have numerically simulated the transport of nondiffusing fine inhaled particles (1 μm and 3 μm in diameter) in two acinar models of varying complexity: (i) a simple alveolated duct and (ii) a space-filling asymmetrical acinar branching tree following the description of lung structure by Fung (1988, “A Model of the Lung Structure and Its Validation,” J. Appl. Physiol., 64, pp. 2132–2141). Detailed particle trajectories and deposition efficiencies, as well as acinar flow structures, were investigated under different orientations of gravity, for tidal breathing motion in an average human adult. Trajectories and deposition efficiencies inside the alveolated duct are strongly related to gravity orientation. While the motion of larger particles (3 μm) is relatively insensitive to convective flows compared with the role of gravitational sedimentation, finer 1 μm aerosols may exhibit, in contrast, complex kinematics influenced by the coupling between (i) flow reversal due to oscillatory breathing, (ii) local alveolar flow structure, and (iii) streamline crossing due to gravity. These combined mechanisms may lead to twisting and undulating trajectories in the alveolus over multiple breathing cycles. The extension of our study to a space-filling acinar tree was well suited to investigate the influence of bulk kinematic interaction on aerosol transport between ductal and alveolar flows. We found the existence of intricate trajectories of fine 1 μm aerosols spanning over the entire acinar airway network, which cannot be captured by simple alveolar models. In contrast, heavier 3 μm aerosols yield trajectories characteristic of gravitational sedimentation, analogous to those observed in the simple alveolated duct. For both particle sizes, however, particle inhalation yields highly nonuniform deposition. While larger particles deposit within a single inhalation phase, finer 1 μm particles exhibit much longer residence times spanning multiple breathing cycles. With the ongoing development of more realistic models of the pulmonary acinus, we aim to capture some of the complex mechanisms leading to deposition of inhaled aerosols. Such models may lead to a better understanding toward the optimization of pulmonary drug delivery to target specific regions of the lung.
Subject
Physiology (medical),Biomedical Engineering
Reference65 articles.
1. Subcommittees on Airborne Particles, Division of Medical Sciences;National Research Council
2. Interaction of Diffusional and Gravitational Particle Transport in Aerosols;Heyder;Aerosol Sci. Technol.
3. Drug Delivery to the Small Airways;Thomson;Am. J. Respir. Crit. Care Med.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献