Gravity-Assisted Heat Pipe With Strong Marangoni Fluid for Waste Heat Management of Single and Dual-Junction Solar Cells

Author:

Armijo Kenneth M.,Carey Van P.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, 6123 Etcheverry Hall, Mailstop 5117, University of California at Berkeley, Berkeley, CA 94720-1740

Abstract

This study investigates the cooling of single and multijunction solar cells with an inclined, gravity-assisted heat pipe, containing a 0.05 M 2-propanol/water mixture that exhibits strong concentration Marangoni effects. Heat pipe solar collector system thermal behavior was investigated theoretically and semi-empirically through experimentation of varying input heat loads from attached strip-heaters to simulate waste heat generation of single-junction monocrystalline silicon (Si), and dual-junction GaInP/GaAs photovoltaic (PV) solar cells. Several liquid charge ratios were investigated to determine an optimal working fluid volume that reduces the evaporator superheat while enhancing the vaporization transport heat flux. Results showed that a 45% liquid charge, with a critical heat flux of 114.8 W/cm2, was capable of achieving the lowest superheat levels, with a system inclination of 37 deg. Solar cell semiconductor theory was used to evaluate the effects of increasing temperature and solar concentration on cell performance. Results showed that a combined PV/heat pipe system had a 1.7% higher electrical efficiency, with a concentration ratio 132 suns higher than the stand-alone system. The dual-junction system also exhibited enhanced performance at elevated system temperatures with a 2.1% greater electrical efficiency, at an operational concentration level 560 suns higher than a stand-alone system.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference61 articles.

1. A Recent Experiment in cSiPV,2010

2. Solar Thermal Collectors and Applications;Prog. Energy Combust. Sci.,2004

3. A Model of Silicon Solar Cells for Concentrator Photovoltaic and Photovoltaic/Thermal System Design;Sol. Energy,1985

4. The Simulation of Heat Pipe Evaporator in Concentration Solar Cell;Appl. Mech. Mat.,2011

5. Photovoltaic Solar Cells Performance at Elevated Temperatures;Sol. Energy,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3