Supersonic Unstalled Flutter In Fan Rotors; Analytical and Experimental Results

Author:

Snyder L. E.1,Commerford G. L.2

Affiliation:

1. Pratt & Whitney Aircraft, East Hartford, Conn.

2. United Aircraft Research Laboratories, East Hartford, Conn.

Abstract

Supersonic unstalled flutter is predicted using an unsteady supersonic cascade analysis, a cascade wind tunnel and a high speed fan rotor. Since the unsteady analysis assumes thin flat plate airfoils, the effect of thickness and blade shape was examined experimentally by flutter testing two sets of supersonic blading in a cascade wind tunnel. The effects of changes in Mach number, reduced frequency, stagger angle and interblade phase angle were examined from the analysis and tests. Results show that the trends are in agreement, but that blade shape has an effect on the level of reduced velocity at the incipient flutter point. The unsteady aerodynamic analysis is applied to two transonic fan stages. The first rotor was designed as a supersonic flutter test vehicle while the second was designed to be flutter free. Results of the fan tests show that the analysis correctly predicts the susceptibility to flutter of each rotor.

Publisher

ASME International

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3