The M.I.T. Blowdown Compressor Facility

Author:

Kerrebrock J. L.1,Epstein A. H.1,Haines D. M.1,Thompkins W. T.1

Affiliation:

1. Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Mass.

Abstract

A Blowdown Compressor Test Facility has been developed which allows time resolved aerodynamic testing of full-scale transonic compressor rotors at low cost. The rotor is brought to speed in vacuum, a diaphragm is opened, and the test gas allowed to flow for a time of the order of one tenth sec, during which the rotor is driven by its own inertia. Both “steady-state” performance evaluation and detailed time resolution of the flow on the blade-passing time scale have been demonstrated for a two-ft dia transonic rotor with tangential Mach number of 1.2 and nominal pressure ratio of 1.6. The steady-state performance as determined in the experiments includes an efficiency of 0.92 and a pressure ratio of 1.55 at design speed. The time resolved measurements include the combination tone structure in the upstream flow field, resolved both axially and radially, and the wake structure downstream of the rotor, also resolved both radially and axially. The radial and axial variations of the rms amplitude of a dominant combination tone are found to agree well with duct mode theory, the axial dependence indicating a standing wave. From the wake measurements, preliminary estimates are given of wake spreading and decay rates, in rotor-exit flow fields.

Publisher

ASME International

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3