Nonlinear Stochastic Drill-String Vibrations

Author:

Spanos P. D.1,Chevallier A. M.2,Politis N. P.3

Affiliation:

1. Rice University, Department of Mechanical Engineering and Material Science, George R. Brown School of Engineering, 6100 Main Street, Houston, TX 77005-1892

2. Accenture Company, 49B NorthCote Road, London, SW111NJ, U.K.

3. Rice University, Department of Civil Engineering, George R. Brown School of Engineering, 6100 Main Street, Houston, TX 77005-1892

Abstract

Lateral vibrations of drill-strings used in oil well operations are considered. A finite elements based discretization procedure leads to a nonlinear dynamic system which is used to represent the drill-string inertia and stiffness characteristics, as well as the elasticity of the wall of the well. Due to the erratic pattern and the uncertainty of the forces at the drill-bit, a stochastic dynamics approach is adopted in investigating the problem. The method of statistical linearization is used, and expressions for determining an equivalent linear system to model the drill-string dynamics are derived. Further, a Monte Carlo simulation of the system dynamics is conducted by means of an Auto Regressive Moving Average (ARMA) digital filter, and by integrating the equations of motion using the Newmark scheme. Numerical results pertaining to data obtained by measurement while drilling (MWD) tools are presented. It is hoped that this study will enhance the interest in using stochastic dynamics techniques in drilling system analysis and design, as they can capture quite appropriately the inherent uncertainty of the bit forces and, potentially, of other sources.

Publisher

ASME International

Subject

General Engineering

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3