Modeling Carrier-Phonon Nonequilibrium Due to Pulsed Laser Interaction With Nanoscale Silicon Films

Author:

Pattamatta Arvind1,Madnia Cyrus K.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260-4400

Abstract

Ultrashort-pulsed laser irradiation on semiconductors creates a thermal nonequilibrium between carriers and phonons. Previous computational studies used the “two-temperature” model and its variants to model this nonequilibrium. However, when the laser pulse duration is smaller than the relaxation time of the carriers or phonons or when the carriers’ or phonons’ mean free path is larger than the material dimension, these macroscopic models fail to capture the physics accurately. In this article, the nonequilibrium between carriers and phonons in silicon films is modeled via numerical solution of the Boltzmann transport model (BTM), which is applicable over a wide range of length and time scales. The BTM is solved using the discontinuous Galerkin finite element method for spatial discretization and the three-stage Runge–Kutta temporal discretization. The BTM results are compared with previous computational studies on laser heating of macroscale silicon films. The model is then used to study laser heating of nanometer size silicon films, by varying parameters such as the laser fluence and pulse duration. From the laser pulse duration study, it is observed that the peak carrier number density, and maximum carrier and phonon temperatures are the highest for the shortest pulse duration of 0.05 ps and decreases with increasing pulse duration. From the laser fluence study, it is observed that for fluences equal to or higher than 1000 J/m2, due to the Auger recombination, a second peak in carrier temperature is observed. The use of carrier-acoustic phonon coupling leads to equilibrium phonon temperatures, which are approximately 400 K higher than that of carrier-optical phonon-acoustic phonon coupling. Both the laser pulse duration and fluence are found to strongly affect the equilibrium time and temperature in Si films.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3