Affiliation:
1. Department of Mechanical Engineering, University of Maryland, 8228 Paint Branch Dr., College Park, MD 20742
Abstract
Abstract
Human beings are physically and cognitively variable, leading to a wide array of potential system use cases. To design safe and effective systems for highly heterogeneous populations, engineers must cater to this variability to minimize the chance of error and system failure. This can be a challenge because of the increasing costs associated with providing additional product variety. Most guidance for navigating these trade-offs is intended for late-stage design, when significant resources have been expended, thus risking expensive redesign or exclusion of users when new human concerns become apparent. Despite the critical need to evaluate accommodation-cost trade-offs in early stages of design, there is currently a lack of structured guidance. In this work, an approach to function modeling is proposed that allows the simultaneous consideration of human and machine functionality. This modeling approach facilitates the allocation of system functions to humans and machines to be used as an accessible baseline for concept development. Further, a multi-objective optimization model was developed to allocate functions with metrics for accommodation and cost. The model was demonstrated in a design case study. About 16 senior mechanical engineering students were recruited and tasked with performing the allocation task manually. The results were compared to the output of the optimization model. Results indicated that participants were unable to produce concepts with the same accommodation-cost efficiency as the optimization model. Further, the optimization model successfully produced a wide range of potential product concepts, demonstrating its utility as a decision-aid.
Funder
Food and Drug Administration
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献