Novel Ionic Liquid Thermal Storage for Solar Thermal Electric Power Systems

Author:

Wu Banqiu1,Reddy Ramana G.1,Rogers Robin D.1

Affiliation:

1. The University of Alabama, Tuscaloosa, AL

Abstract

Abstract Feasibility of ionic liquids as liquid thermal storage media and heat transfer fluids in a solar thermal power plant was investigated. Many ionic liquids such as [C4min][PF6], [C8mim][PF6], [C4min][bistrifluromethane sulflonimide], [C4min][BF4], [C8mim][BF4], and [C4min][bistrifluromethane sulflonimide] were synthesized and characterized using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), nuclear magnetic resonance (NMR), viscometry, and some other methods. Properties such as decomposition temperature, melting point, viscosity, density, heat capacity, and thermal expansion coefficient were measured. The calculated storage density for [C8mim][PF6] is 378 MJ/m3 when the inlet and outlet field temperatures are 210°C and 390°C. For a single ionic liquid, [C4mim][BF4], the liquid temperature range is from −75°C to 459°C. It is found that ionic liquids have advantages of high density, wide liquid temperature range, low viscosity, high chemical stability, non-volatility, high heat capacity, and high storage density. Based on our experimental results, it is concluded that ionic liquids could be excellent liquid thermal storage media and heat transfer fluids in solar thermal power plant.

Publisher

American Society of Mechanical Engineers

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct Air Capture of CO2 by Amino Acid-Functionalized Ionic Liquid-Based Deep Eutectic Solvents;ACS Sustainable Chemistry & Engineering;2024-08-19

2. Effect of novel vortex generator on parabolic trough solar collectors using ionic liquid;Applied Thermal Engineering;2024-01

3. Ionic Liquids in Catalysis: An Innovative and Green Approach for the Synthesis of Nitrogen Heterocycles;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2024

4. Numerical Study of CO2 Removal from Inhalational Anesthesia System by Using Gas-Ionic Liquid Membrane;ChemEngineering;2023-07-12

5. Thermal energy storage options;Power Generation Technologies for Low-Temperature and Distributed Heat;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3