Affiliation:
1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
Abstract
The increasing complexity of engineering systems has motivated continuing research on computational learning methods toward making autonomous intelligent systems that can learn how to improve their performance over time while interacting with their environment. These systems need not only to sense their environment, but also to integrate information from the environment into all decision-makings. The evolution of such systems is modeled as an unknown controlled Markov chain. In a previous research, the predictive optimal decision-making (POD) model was developed, aiming to learn in real time the unknown transition probabilities and associated costs over a varying finite time horizon. In this paper, the convergence of the POD to the stationary distribution of a Markov chain is proven, thus establishing the POD as a robust model for making autonomous intelligent systems. This paper provides the conditions that the POD can be valid, and be an interpretation of its underlying structure.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献