Wire Stress Calculations in Helical Strands Undergoing Bending

Author:

Raoof M.1,Huang Y. P.1

Affiliation:

1. Civil and Structural Engineering Department, South Bank Polytechnic, London, U.K.

Abstract

Steel cables play an important role in many offshore applications. In many cases, an understanding of the magnitude and pattern of bending stresses in the individual component wires of a bent strand is essential for minimizing the risk of their failure under operating conditions. Following previously reported experimental observations, a theoretical model is proposed for obtaining the magnitude of wire bending stresses in a multi-layered and axially preloaded spiral strand fixed at one end and subsequently bent to a constant radius of curvature. The individual wire bending stresses are shown to be composed of two components. The first component is the axial stress generated in the wires due to interwire/interlayer shear interactions between the wires in a bent cable, and the second component is associated with the wires bending about their own axes. Using the theoretical model, which includes the effects of interwire friction, parametric studies on a number of realistic helical strands with widely different cable (and wire) diameters and lay angles subjected to a range of practical mean axial loads, and subsequently bent to a range of radii of curvature with one end of the cable fixed against rotation, have been carried out. It is shown that for most practical applications, the axial component of wire stresses due to friction is much greater than the second component of bending stresses associated with the individual wires bending about their own axes.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3