Transient Free Convection in a Bingham Plastic on a Vertical Flat Plate

Author:

Kleppe J.1,Marner W. J.1

Affiliation:

1. Department of Mechanical Engineering, South Dakota School of Mines and Technology, Rapid City, S. D.

Abstract

A theoretical investigation of transient free convection in a Bingham plastic on a vertical flat plate with constant wall temperature is presented. Except for a linear variation of density with temperature in the body force term, all fluid properties are assumed to be constants. The parameters of the problem are the Prandtl number Pr and a dimensionless group involving the Hedstrom and Grashof numbers, He/GrL3/4. Solutions to the governing boundary-layer equations are obtained using an explicit finite-difference procedure. Mean Nusselt numbers NuL are presented for a range of the parameters, along with representative velocity profiles, temperature profiles, and friction coefficients. Flow in the Bingham plastic does not start until the buoyancy forces become sufficiently large to cause a shear stress in the material which exceeds the yield stress. Thus, for short times heat is transferred by one-dimensional transient conduction, which has the well-known solution expressed in terms of the complementary error function. A temporal minimum, which becomes more pronounced with increasing He/GrL3/4, is noted in the mean Nusselt number. Steady-state NuL values are higher for Bingham plastics than for Newtonian fluids, but the maximum increase, which decreases with increasing Pr, is noted to be less than 15 percent. Due to the behavior of the velocity gradient at the wall, which reaches a maximum before steady-state conditions are reached, a temporal maximum is observed in the mean friction coefficient. Bingham-plastic friction coefficients are significantly higher than for Newtonian fluids; however, this increase is due primarily to the yield stress rather than as a consequence of a steeper velocity gradient at the wall.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3