Numerical Simulation of the Effects of a Thermally Significant Blood Vessel on Freezing by a Circular Surface Cryosurgical Probe Compared With Experimental Data

Author:

Beckerman Genady1,Shitzer Avraham1,Degani David1

Affiliation:

1. Department of Mechanical Engineering, Israel Institute of Technology, Haifa, Israel 32000

Abstract

The dynamic thermal interaction between a surface cryosurgical probe (heat sink) and an embedded cylindrical tube (heat source), simulating a thermally-significant blood vessel, has been studied. The cryoprobe was operated by liquid nitrogen while the embedded tube was perfused by water at a constant inlet temperature. Previous experimental data were obtained in a phase-changing medium (PCM) made of 30%/70% by volume mashed potato flakes/distilled-water solution. A parametric study was conducted without the embedded tube, and with flow rates of 30 ml/min and 100 ml/min in the tube, while cooling rates at the tip of the cryoprobe were maintained at −4°C/min, −8°C/min, or −12°C/min. Numerical thermal analysis was performed by ANSYS7.0 and showed good conformity to the experimental data. The results quantify the effects of these parameters on both the shape and extent of freezing obtained in the PCM. For 20 min of operation of the cryoprobe, water temperatures inside the tube remained well above the freezing point for all assumed operating conditions. Frozen volumes of the 0°C isotherm, approximating the “frozen front,” and the −40°C isotherm, representing the “lethal temperature,” were smallest for the combination of highest cooling rate at the cryoprobe and the highest flow rate in the tube, (−12°C/min and 100 ml/min). The results indicate that both the flow rates in the embedded tube, and the cooling rates applied at the cryoprobe, have similar qualitative effects on the size of the PCM frozen volumes; increasing either one will cause these volumes to decrease. Under the conditions of this study the effects of flow rate in the tube are more pronounced, however, effecting relative frozen volumes decreases by about 10–20% while those of the cooling rate at the cryoprobe are in the range of 7–14%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3