Rotational Augmentation of Horizontal Axis Wind Turbine Blade Aerodynamic Response

Author:

Schreck S.1,Robinson M.1

Affiliation:

1. National Renewable Energy Laboratory, Golden, CO

Abstract

Surface pressure data were acquired using the NREL Unsteady Aerodynamics Experiment, a full-scale horizontal axis wind turbine, which was erected in the NASA Ames 80 ft × 120 ft wind tunnel. Data were collected first for a stationary blade, and then for a rotating blade with the turbine disk at zero yaw. Analyses compared aerodynamic forces and surface pressure distributions under rotating conditions against analogous baseline data acquired from the stationary blade. This comparison allowed rotational modifications to blade aerodynamics to be characterized in detail. Rotating conditions were seen to dramatically amplify aerodynamic forces, and radically alter surface pressure distributions. These and subsequent findings will more fully reveal the structures and interactions responsible for these flow field enhancements, and help establish the basis for formalizing comprehension in physics based models.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Unified RNN Blade Flow Model: Rotating Blade and Yawed Turbine Conditions;44th AIAA Aerospace Sciences Meeting and Exhibit;2006-01-09

2. RNN Blade Flow Models: UAE HAWT Rotating Blade and Yawed Turbine Conditions;43rd AIAA Aerospace Sciences Meeting and Exhibit;2005-01-10

3. RNN Blade Flow Models of the UAE HAWT Blade Undergoing Harmonic Oscillations;42nd AIAA Aerospace Sciences Meeting and Exhibit;2004-01-05

4. Detached-eddy simulation of flow around the NREL Phase VI blade;Wind Energy;2002-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3