Feasibility Study of Upper Limb Control Method Based on Electromyography-Angle Relation

Author:

Lento Bianca1,Aoustin Yannick2,Zielinska Teresa3

Affiliation:

1. Laboratory INCIA UMR 5287, University of Bordeaux , Bordeaux 33000, France

2. LS2N, UMR CNRS 6004, Nantes University , Nantes 44321, France

3. Faculty of Power and Aeronautical Engineering, Warsaw University of Technology , Nowowiejska 24, Warsaw 00-665, Poland

Abstract

AbstractThe paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely, to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations. In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the opensim simulator using real angular positions are examined.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Joint Angle Estimation Using Support Vector Machine-Long Short-Term Memory Fusion with Electromyography Signals;2024 American Control Conference (ACC);2024-07-10

2. Estimating Angular Joint Positions Based on Electromyographic (EMG) Activity;2024 13th International Workshop on Robot Motion and Control (RoMoCo);2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3