On Wake-Induced Flutter of a Circular Cylinder in the Wake of Another

Author:

Tsui Y. T.1

Affiliation:

1. Hydro-Quebec Research Institute, Varennes, Quebec, Canada

Abstract

Two-dimensional stability of leaward cylinder in the wake of fixed windward cylinder is studied within the framework of quasi-static aerodynamic theory at both subcritical and supercritical flow region. Routh-Hurwitz stability criterion is employed. Two important points are clarified: 1. The wake-induced flutter is symmetric with respect to the horizontal line if there is no xy (refer to Fig. 1) static coupling. When coupled, the wake symmetry preserves provided the sign of static coupling is changed. This finding is supported by recent experimental data [7] and is in contrary with previous results [4–6]. 2. For the uncoupled case, vertical and horizontal frequency coalescence does not necessarily imply no oscillation. This is in variance with previous studies [2, 3, 34]. The region of instability is related to four physical variables: vertical to horizontal natural frequency ratio κ = ωy/ωx = (Kyy/Kxx)1/2, static coupling coefficient ε = Kxy/Kxx, cylinder spacing to diameter ratio d/c and flow characteristics. Some highlights of numerical results [1] are as follows: (a) The region of instability roughly lies between 0 < |ε| < 0.1 and 0.8 ≤ κ ≤ 1.2. (b) The region of instability enlarges as |ε| increases from zero to 0.8 when everything else is kept fixed. (c) For both subcritical and supercritical flow, the region of instability shrinks as d/c varies from 10–16 when keeping all other factors fixed. (d) The region of instability shrinks as the flow changes from subcritical to supercritical when everything else remains unchanged.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3