State Space Model for Thermal Analysis of Integrated Structure of Flat Plate Solar Collector and Building Envelope

Author:

Yu Guoqing1,Zhou Jirui1,Tang Yongqiang1

Affiliation:

1. School of Environment and Architecture, University of Shanghai for Science and Technology, Jungong Road 516, Shanghai 200093, China e-mail:

Abstract

Active types of integration of flat plate solar collectors and building envelopes are studied in this paper. The integrated structure of flat plate solar collector and building envelope includes glass cover, absorber plate, tubes, back insulation, and building envelope (we will call it integrated structure later in this paper). With the solar collector integrated with building, the boundary conditions of heat transfer both for the solar collector and the building envelope are changed significantly, and the thermal performance of solar collection and building heat transfer characteristics influences each other. The state space model for thermal analysis of the integrated structure is proposed in this paper, and method for solving this state space model is provided. Moreover, thermal analysis for a particular integrated structure was conducted both by state space model and fluent simulation, then the results were compared and agree well. The state space model has great advantages in time-spending over fluent simulation and it can be used for long-term (several months or a whole year) simulation of the integrated structure. Comparison were made between the integrated structure, detached solar collector and detached single wall based on results calculated by state space method. It shows that (1) integration has little impact on the thermal efficiency of solar collection and the useful heat gain of the integrated structure are nearly the same as that for the single detached solar collector under the same ambient conditions; (2) integration has significant impact on the heat flux across the wall, and the heat flux of the integrated structure is much less than the detached single wall.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3