Low NOx Combustion Systems for Burning Heavy Residual Fuels and High-Fuel-Bound Nitrogen Fuels

Author:

White D. J.1,Batakis A.1,LeCren R. T.1,Yacobucci H. G.2

Affiliation:

1. Solar Turbine Incorporated, San Diego, Calif. 92138

2. NASA Lewis Research Center, Cleveland, Ohio 44135

Abstract

The work described in this paper is a part of the Department of Energy/Lewis Research Center (DOE/LeRC) “Advanced Conversion Technology” (ACT) project. The program is a multiple contract effort with funding provided by the Department of Energy and technical program management provided by NASA LeRC. The increasingly critical situation concerning the world’s petroleum supply necessitates the investigation of alternate fuels for use in industrial gas turbines. Environmentally acceptable operation with minimally processed petroleum based heavy residual and coal derived synthetic fuels requires advanced combustor technology. The technology described in this paper was developed under the DOE/NASA Low NOx Heavy Fuel Combustor Concept Program (Contract DEN3-145). Novel combustor concepts were designed for dry reduction of thermal NOx, control of NOx from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. These combustor concepts were tested by burning a wide variety of fuels including a middle distillate (ERBS), a petroleum based heavy residual, a coal derived synthetic (SRC-II), and various ratios of blends of these fuels which included nitrogen doping with pyridine. The results of these tests show promise that low NOx emissions and high efficiencies can be obtained over most of the operating range of a typical industrial gas turbine engine.

Publisher

ASME International

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Flow and Convective Heat Transfer in a Simulated Scaled Up Low Emission Annular Combustor;Journal of Thermal Science and Engineering Applications;2011-08-12

2. Emissions;Gas Turbine Combustion;2010-04-26

3. PRESSURE—SWIRL ATOMIZATION OFWATER-IN-OIL EMULSIONS;Atomization and Sprays;2010

4. Predictions of Flow and Heat Transfer in Low Emission Combustors;Heat Transfer Engineering;2008-04

5. The Role of Fuel Preparation in Low-Emission Combustion;Journal of Engineering for Gas Turbines and Power;1995-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3